Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Int J Pharm ; 657: 124126, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38626845

RESUMEN

As the monotherapy of available analgesics is usually accompanied by serious side effects or limited efficacy in the management of chronic pain, multimodal analgesia is widely used to achieve improved benefit-to-risk ratios in clinic. Drug-drug salts are extensively researched to optimize the physicochemical properties of active pharmaceutical ingredients (APIs) and achieve clinical benefits compared with individual APIs or their combination. New drug-drug salt crystals metformin-ibuprofen (MET-IBU) and metformin-naproxen (MET-NAP) were prepared from metformin (MET) and two poorly water-soluble anti-inflammatory drugs (IBU and NAP) by the solvent evaporation method. The structures of these crystals were confirmed by single crystal and powder X-ray diffraction, Hirshfeld surface, Fourier transform infrared spectroscopy and thermal analysis. Both MET-IBU and MET-NAP showed significantly improved solubility and intrinsic dissolution rate than the pure IBU or NAP. The stability test indicated that MET-IBU and MET-NAP have excellent physical stability under stressing test (10 days) and accelerated conditions (3 months). Moreover, isobolographic analysis suggested that MET-IBU and MET-NAP exerted potent and synergistic antinociceptive effects in λ-Carrageenan-induced inflammatory pain in mice, and both of them had an advantage in rapid pain relief. These results demonstrated the potential of MET-IBU and MET-NAP to achieve synergistic antinociceptive effects by developing drug-drug salt crystals.

2.
Nat Commun ; 15(1): 1995, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443404

RESUMEN

Cardiac macrophage contributes to the development of cardiac fibrosis, but factors that regulate cardiac macrophages transition and activation during this process remains elusive. Here we show, by single-cell transcriptomics, lineage tracing and parabiosis, that cardiac macrophages from circulating monocytes preferentially commit to macrophage-to-myofibroblast transition (MMT) under angiotensin II (Ang II)-induced hypertension, with accompanying increased expression of the RNA N6-methyladenosine demethylases, ALKBH5. Meanwhile, macrophage-specific knockout of ALKBH5 inhibits Ang II-induced MMT, and subsequently ameliorates cardiac fibrosis and dysfunction. Mechanistically, RNA immunoprecipitation sequencing identifies interlukin-11 (IL-11) mRNA as a target for ALKBH5-mediated m6A demethylation, leading to increased IL-11 mRNA stability and protein levels. By contrast, overexpression of IL11 in circulating macrophages reverses the phenotype in ALKBH5-deficient mice and macrophage. Lastly, targeted delivery of ALKBH5 or IL-11 receptor α (IL11RA1) siRNA to monocytes/macrophages attenuates MMT and cardiac fibrosis under hypertensive stress. Our results thus suggest that the ALKBH5/IL-11/IL11RA1/MMT axis alters cardiac macrophage and contributes to hypertensive cardiac fibrosis and dysfunction in mice, and thereby identify potential targets for cardiac fibrosis therapy in patients.


Asunto(s)
Adenina , Hipertensión , Interleucina-11 , Animales , Humanos , Ratones , Adenina/análogos & derivados , Desmetilasa de ARN, Homólogo 5 de AlkB , Angiotensina II , Cardiotónicos , Macrófagos , Miofibroblastos , ARN
3.
J Tradit Chin Med ; 44(2): 289-302, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38504535

RESUMEN

OBJECTIVE: To discuss the influence of Sailuotong (, SLT) on the Neurovascular Unit (NVUs) of amyloid precursor protein (APP)/presenilin-1(PS1) mice and evaluate the role of gas supplementation in activating blood circulation during the progression of Alzheimer's disease (AD). METHODS: The mice were allocated into the following nine groups: (a) the C57 Black (C57BL) sham-operated group (control group), (b) ischaemic treatment in C57BL mice (the C57 ischaemic group), (c) the APP/PS1 sham surgery group (APP/PS1 model group), (d) ischaemic treatment in APP/PS1 mice (APP/PS1 ischaemic group), (e) C57BL mice treated with aspirin following ischaemic treatment (C57BL ischaemic + aspirin group), (f) C57BL mice treated with SLT following ischaemic treatment (C57BL ischaemic + SLT group), (g) APP/PS1 mice treated with SLT (APP/PS1 + SLT group), (h) APP/PS1 mice treated with donepezil hydrochloride following ischaemic treatment (APP/PS1 ischaemic + donepezil hydrochloride group) and (i) APP/PS1 mice treated with SLT following ischaemic treatment (APP/PS1 ischaemic + SLT group). The ischaemic model was established by operating on the bilateral common carotid arteries and creating a microembolism. The Morris water maze and step-down tests were used to detect the spatial behaviour and memory ability of mice. The hippocampus of each mouse was observed by haematoxylin and eosin (HE) and Congo red staining. The ultrastructure of NVUs in each group was observed by electron microscopy, and various biochemical indicators were detected by enzyme-linked immunosorbent assay (ELISA). The protein expression level was detected by Western blot. The mRNA expression was detected by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS: The results of the Morris water maze and step-down tests showed that ischemia reduced learning and memory in the mice, which were restored by SLT. The results of HE staining showed that SLT restored the pathological changes of the NVUs. The Congo red staining results revealed that SLT also improved the scattered orange-red sediments in the upper cortex and hippocampus of the APP/PS1 and APP/PS1 ischaemic mice. Furthermore, SLT significantly reduced the content of Aß, improved the vascular endothelium and repaired the mitochondrial structures. The ELISA detection, western blot detection and qRT-PCR showed that SLT significantly increased the vascular endothelial growth factor (VEGF), angiopoietin and basic fibroblast growth factor, as well as the levels of gene and protein expression of low-density lipoprotein receptor-related protein-1 (LRP-1) and VEGF in brain tissue. CONCLUSIONS: By increasing the expression of VEGF, SLT can promote vascular proliferation, up-regulate the expression of LRP-1, promote the clearance of Aß and improve the cognitive impairment of APP/PS1 mice. These results confirm that SLT can improve AD by promoting vascular proliferation and Aß clearance to protect the function of NVUs.


Asunto(s)
Enfermedad de Alzheimer , Precursor de Proteína beta-Amiloide , Medicamentos Herbarios Chinos , Ratones , Animales , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Ratones Transgénicos , Factor A de Crecimiento Endotelial Vascular , Donepezilo , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Presenilina-1/genética , Presenilina-1/metabolismo , Rojo Congo , Ratones Endogámicos C57BL , Aspirina , Modelos Animales de Enfermedad
4.
Biochem Biophys Res Commun ; 697: 149547, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38245926

RESUMEN

A new series of thiophenpiperazine amide derivatives as potent dual ligands for the µ-opioid (MOR) and sigma-1 (σ1R) receptors are reported. Compound 23 exhibited good affinity to σ1R (Ki = 44.7 ± 7.05 nM) and high selectivity to σ2R. Furthermore, Compound 23 exerted MOR agonism and σ1R antagonism and potent analgesic activity in animal moldes (the abdominal constriction test (ED50 = 3.83 mg/kg) and carrageenan-induced inflammatory hyperalgesia model (ED50 = 5.23 mg/kg)). We obtained new dual ligands that might serve as starting points for preparing targeted tools. Furthermore, 23 may be a useful chemical probe for understanding more fully analgesic effects associated with MOR agonism and σ1R antagonism.


Asunto(s)
Amidas , Receptores sigma , Animales , Amidas/farmacología , Amidas/uso terapéutico , Dolor/inducido químicamente , Dolor/tratamiento farmacológico , Analgésicos/farmacología , Analgésicos/uso terapéutico , Analgésicos/química , Hiperalgesia/inducido químicamente , Hiperalgesia/tratamiento farmacológico , Ligandos , Receptores Opioides mu
5.
Phytomedicine ; 124: 155280, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38183697

RESUMEN

BACKGROUND: Polycystic ovary syndrome (PCOS) is the most common reproductive-endocrine condition in premenopausal women. Troxerutin, a common clinical anti-coagulant agent, was shown to work as a strong IL-22 boosting agent counteracting the hyperactivated gonadotrophin releasing hormone (GnRH) neurons and heightened GnRH release, the neuroendocrine origin of PCOS with unknown mechanism in rats. Exploring the off-label use of troxerutin medication for PCOS is thus sorely needed. METHODS: Serum IL-22 content and hypothalamic IL-22 protein were detected. Inflammatory factor levels in hypothalamo-pituitary were evaluated. Immunofluorescence staining was employed to determine the activation and M1/M2-prone polarization of microglia in arcuate hypothalamus and median eminence. RNA-sequencing and transcriptome analysis were applied to explore the potential driver of microglia M2-polarization in response to IL-22 bolstering effect. The function of microglial IL-22/IL-22R1/IRF3 system was further verified using in vivo knockdown of IL-22R1 and a potent IRF3 inhibitor in BV2 microglial cell lines in vitro. RESULTS: Troxerutin augmented serum IL-22 content, and its consequent spillover into the hypothalamus led to the direct activation of IL-22R1/IRF3 system on microglia, thereby promoted microglia M2 polarization in arcuate hypothalamus and median eminence, dampened hypothalamic neuroinflammation, inhibited hyperactive GnRH and rescued a breadth of PCOS-like traits in dihydrotestosterone (DHT) rats. The salutary effects of troxerutin treatment on hypothalamic neuroinflammation, microglial M1/2 polarization, GnRH secretion and numerous PCOS-like features were blocked by in vivo knockdown of IL-22R1. Moreover, evidence in vitro illustrated that IL-22 supplement to BV-2 microglia cell lines promoted M2 polarization, overproduction of anti-inflammatory marker and limitation of pro-inflammatory factors, whereas these IL-22 effects were blunted by geldanamycin, a potent IRF3 inhibitor. CONCLUSION: Here, the present study reported the potential off-label use of troxerutin medication, a common clinical anti-coagulant agent and an endogenous IL-22 enhancer, for multiple purposes in PCOS. The rational underlying the application of troxerutin as a therapeutic choice in PCOS derived from its activity as an IL-22 memetic agent targeting the neuro-endocrine origin of PCOS, and its promotive impact on microglia M2 polarization via activating microglial IL-22R1/IRF3 system in the arcuate hypothalamus and median eminence of DHT female rats.


Asunto(s)
Hidroxietilrutósido/análogos & derivados , Síndrome del Ovario Poliquístico , Receptores de Interleucina , Humanos , Ratas , Femenino , Animales , Síndrome del Ovario Poliquístico/inducido químicamente , Síndrome del Ovario Poliquístico/tratamiento farmacológico , Dihidrotestosterona/efectos adversos , Dihidrotestosterona/metabolismo , Microglía , Enfermedades Neuroinflamatorias , 60552 , Hipotálamo/metabolismo , Hormona Liberadora de Gonadotropina/efectos adversos , Hormona Liberadora de Gonadotropina/metabolismo , Factor 3 Regulador del Interferón/metabolismo
6.
J Cardiovasc Transl Res ; 17(1): 153-166, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37713049

RESUMEN

Macrophage is the main effector cell during atherosclerosis. We applied single-cell RNA sequencing (scRNA) data to investigate the role of macrophage subsets in atherosclerosis. Monocyte and macrophage clusters were divided into 6 subclusters. Each subcluster's markers were calculated and validated by immunofluorescence. Elevated macrophage subclusters in the WD group were subject to enrichment pathway analysis and exhibited different phenotypes. Pseudotime analysis shows the subclusters originate from monocytes. We cultured bone marrow-derived macrophages with CSF-1 and ox-LDL to simulate an atherosclerotic-like environment and detected the transformation of subclusters. Macrophage-Vegfa and Macrophage-C1qb increased in the WD group. Macrophage-Vegfa acquires the characteristics of phagocytosis and immune response, while Macrophage-C1qb is not involved in lipid metabolism. The two subclusters are both enriched in cell movement and migration pathways. Experimental verification proved Monocyte-Ly6C evolved into Macrophage-Vegfa and Macrophage-C1qb during atherosclerosis progression.


Asunto(s)
Enfermedades de la Aorta , Aterosclerosis , Placa Aterosclerótica , Humanos , Macrófagos/metabolismo , Monocitos/metabolismo , Aterosclerosis/metabolismo , Enfermedades de la Aorta/genética , Enfermedades de la Aorta/metabolismo , Aorta/metabolismo , Placa Aterosclerótica/genética
7.
J Dairy Sci ; 107(3): 1577-1591, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37806629

RESUMEN

Mastitis is one of the most frequent and costly diseases affecting dairy cattle. Natural antibodies (immunoglobulins) and cyclophilin A (CyPA), the most abundant member of the family of peptidyl prolyl cis/trans isomerases, in milk may serve as indicators of mastitis resistance in dairy cattle. However, genetic information for CyPA is not available, and knowledge on the genetic and nongenetic relationships between these immune-related traits and somatic cell score (SCS) and milk yield in dairy cattle is sparse. Therefore, we aimed to comprehensively evaluate whether immune-related traits consisting of 5 Ig classes (IgG, IgG1, IgG2, IgA, and IgM) and CyPA in the test-day milk of Holstein cows can be used as genetic indicators of mastitis resistance by evaluating the genetic and nongenetic relationships with SCS in milk. The nongenetic factors affecting immune-related traits and the effects of these traits on SCS were evaluated. Furthermore, the genetic parameters of immune-related traits according to health status and genetic relationships under different SCS environments were estimated. All immune-related traits were significantly associated with SCS and directly proportional. Additionally, evaluation using a classification tree revealed that IgA, IgG2, and IgG were associated with SCS levels. Genetic factor analyses indicated that heritability estimates were low for CyPA (0.08) but moderate for IgG (0.37), IgA (0.44), and IgM (0.44), with positive genetic correlations among Ig (0.25-0.96). We also evaluated the differences in milk yield and SCS of cows between the low and high groups according to their sires' estimated breeding value for immune-related traits. In the high group, IgA had a significantly lower SCS in milk at 7 to 30 d compared with that in the low group. Furthermore, the Ig in milk had high positive genetic correlations between healthy and infected conditions (0.82-0.99), suggesting that Ig in milk under healthy conditions could interact with those under infected conditions, owing to the genetic ability based on the level of Ig in milk. Thus, Ig in milk are potential indicators for the genetic selection of mastitis resistance. However, because only the relationship between immune-related traits and SCS was investigated in this study, further study on the relationship between clinical mastitis and Ig in milk is needed before Ig can be used as an indicator of mastitis resistance.


Asunto(s)
Enfermedades de los Bovinos , Mastitis , Femenino , Bovinos , Animales , Ciclofilina A , Leche , Mastitis/veterinaria , Inmunoglobulina A , Inmunoglobulina G , Inmunoglobulina M , Enfermedades de los Bovinos/genética
8.
Phys Rev Lett ; 131(23): 234001, 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38134795

RESUMEN

Diffraction sets a natural limit for the spatial resolution of acoustic wave fields, hindering the generation and recording of object details and manipulation of sound at subwavelength scales. We propose to overcome this physical limit by utilizing nonlinear acoustics. Our findings indicate that, contrary to the commonly utilized cumulative nonlinear effect, it is in fact the local nonlinear effect that is crucial in achieving subdiffraction control of acoustic waves. We theoretically and experimentally demonstrate a deep subwavelength spatial resolution up to λ/38 in the far field at a distance 4.4 times the Rayleigh distance. This Letter represents a new avenue towards deep subdiffraction control of sound, and may have far-reaching impacts on various applications such as acoustic holograms, imaging, communication, and sound zone control.

10.
Front Immunol ; 14: 1117102, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37465671

RESUMEN

In vitro culture models that precisely mirror the porcine respiratory epithelium are needed to gain insight into how pathogens and host interact. In this study, a new porcine bronchial epithelial cell line, designated as PBE cells, was established from the respiratory tract of a neonatal pig. PBE cells assumed a cobblestone-epithelial like morphology with close contacts between the cells when they reached confluence. The PBE cell line was characterized in terms of its expression of pattern recognition receptors (PRRs) and its ability to respond to the activation of the Toll-like receptor 3 (TLR3) and TLR4 signaling pathways, which are key PRRs involved in the defense of the respiratory epithelium against pathogens. PBE cells stimulated with poly(I:C) were able to up-regulate the expression of IFN-ß, IFN-λ1 (IL-29), IFN-λ3 (IL-28B), the antiviral factors Mx1, OAS1, and PKR, as well as the viral PRRs RIG-1 and MDA5. The expression kinetics studies of immune factors in PBE cells allow us to speculate that this cell line can be a useful in vitro tool to investigate treatments that help to potentiate antiviral immunity in the respiratory epithelium of the porcine host. In addition, poly(I:C) and LPS treatments increased the expression of the inflammatory cytokines TNF-α, IL-6, IL-8, and MCP-1/CCL2 and differentially modulated the expression of negative regulators of the TLR signaling pathways. Then, PBE cells may also allow the evaluation of treatments that can regulate TLR3- and TLR4-mediated inflammatory injury in the porcine airway, thereby protecting the host against harmful overresponses.


Asunto(s)
Receptor Toll-Like 3 , Receptor Toll-Like 4 , Porcinos , Animales , Receptor Toll-Like 3/metabolismo , Receptor Toll-Like 4/metabolismo , Inmunidad Innata , Citocinas/metabolismo , Células Epiteliales/metabolismo , Receptores de Reconocimiento de Patrones/metabolismo , Mucosa Respiratoria , Antivirales/metabolismo
11.
Eur Heart J ; 44(29): 2730-2742, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37377160

RESUMEN

AIMS: Excess dietary sodium intake and retention lead to hypertension. Impaired dermal lymphangiogenesis and lymphatic dysfunction-mediated sodium and fluid imbalance are pathological mechanisms. The adenosine A2A receptor (A2AR) is expressed in lymphatic endothelial cells (LECs), while the roles and mechanisms of LEC-A2AR in skin lymphangiogenesis during salt-induced hypertension are not clear. METHODS AND RESULTS: The expression of LEC-A2AR correlated with lymphatic vessel density in both high-salt diet (HSD)-induced hypertensive mice and hypertensive patients. Lymphatic endothelial cell-specific A2AR knockout mice fed HSD exhibited 17 ± 2% increase in blood pressure and 17 ± 3% increase in Na+ content associated with decreased lymphatic density (-19 ± 2%) compared with HSD-WT mice. A2AR activation by agonist CGS21680 increased lymphatic capillary density and decreased blood pressure in HSD-WT mice. Furthermore, this A2AR agonist activated MSK1 directly to promote VEGFR2 activation and endocytosis independently of VEGF as assessed by phosphoprotein profiling and immunoprecipitation assays in LECs. VEGFR2 kinase activity inhibitor fruquintinib or VEGFR2 knockout in LECs but not VEGF-neutralizing antibody bevacizumab suppressed A2AR activation-mediated decrease in blood pressure. Immunostaining revealed phosphorylated VEGFR2 and MSK1 expression in the LECs were positively correlated with skin lymphatic vessel density and A2AR level in hypertensive patients. CONCLUSION: The study highlights a novel A2AR-mediated VEGF-independent activation of VEGFR2 signaling in dermal lymphangiogenesis and sodium balance, which might be a potential therapeutic target in salt-sensitive hypertension.


Asunto(s)
Hipertensión , Linfangiogénesis , Ratones , Animales , Receptor de Adenosina A2A/metabolismo , Células Endoteliales/metabolismo , Inhibidores de Proteínas Quinasas , Sodio/metabolismo
12.
Redox Biol ; 64: 102775, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37339559

RESUMEN

Endothelial dysfunction results in chronic vascular inflammation, which is critical for the development of atherosclerotic diseases. Transcription factor Gata6 has been reported to regulate vascular endothelial cell activation and inflammation in vitro. Here, we aimed to explore the roles and mechanisms of endothelial Gata6 in atherogenesis. Endothelial cell (EC) specific Gata6 deletion was generated in the ApoeKO hyperlipidemic atherosclerosis mouse model. Atherosclerotic lesion formation, endothelial inflammatory signaling, and endothelial-macrophage interaction were examined in vivo and in vitro by using cellular and molecular biological approaches. EC-GATA6 deletion mice exhibited a significant decrease in monocyte infiltration and atherosclerotic lesion compared to littermate control mice. Cytosine monophosphate kinase 2 (Cmpk2) was identified as a direct target gene of GATA6 and EC-GATA6 deletion decreased monocyte adherence, migration and pro-inflammatory macrophage foam cell formation through regulation of the CMPK2-Nlrp3 pathway. Endothelial target delivery of Cmpk2-shRNA by intercellular adhesion molecule 2 (Icam-2) promoter-driven AAV9 carrying the shRNA reversed the Gata6 upregulation mediated elevated Cmpk2 expression and further Nlrp3 activation and thus attenuated atherosclerosis. In addition, C-C motif chemokine ligand 5 (Ccl5) was also identified as a direct target gene of Gata6 to regulate monocyte adherence and migration influencing atherogenesis. This study provides direct in vivo evidence of EC-GATA6 involvement in the regulation of Cmpk2-Nlrp3, as well as Ccl5, on monocyte adherence and migration in atherosclerosis development and advances our understanding of the in vivo mechanisms of atherosclerotic lesion development, and meanwhile provides opportunities for future therapeutic interventions.


Asunto(s)
Aterosclerosis , Monocitos , Animales , Ratones , Aterosclerosis/metabolismo , Adhesión Celular , Inflamación/metabolismo , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Monocitos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , ARN Interferente Pequeño/metabolismo , Molécula 1 de Adhesión Celular Vascular/metabolismo
13.
Eur J Pharmacol ; 954: 175870, 2023 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-37353189

RESUMEN

Chronic pain is a common public health problem and remains an unmet medical need. Currently available analgesics usually have limited efficacy for the treatment of chronic pain, including neuropathic pain and persistent inflammatory pain, or they are accompanied by many adverse side effects. The voltage-gated calcium channel blocker (pregabalin) and potassium channel openers (flupirtine and retigabine) have been widely used for the management of chronic pain, but their effectiveness in combination is unclear. In this research, we evaluated the antinociceptive effects of pregabalin in combination with flupirtine or retigabine in carrageenan-induced inflammatory pain and paclitaxel-induced peripheral neuropathy in mice using the von Frey test. Isobolographic analysis indicated that pregabalin exerted synergistic antinociceptive effects when combined with flupirtine or retigabine in neuropathic and inflammatory pain models. Furthermore, the antinociceptive effects of pregabalin, flupirtine/retigabine, and their combinations were significantly attenuated by the Kv7 channel blocker XE991. The favored dose ratio between pregabalin and flupirtine/retigabine in combinations was also investigated. Finally, we evaluated the motor coordination of their combinations using the rotarod test, and the outcomes underpinned their safety. Collectively, our results support the potential use of pregabalin in combination with flupirtine or retigabine to alleviate chronic pain.


Asunto(s)
Dolor Crónico , Ratones , Animales , Pregabalina/farmacología , Pregabalina/uso terapéutico , Dolor Crónico/tratamiento farmacológico , Analgésicos/farmacología , Analgésicos/uso terapéutico
14.
Biomed Pharmacother ; 163: 114815, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37146420

RESUMEN

Preterm white matter injury (PWMI), characterized by oligodendrocyte precursor cell (OPC) differentiation disorder and dysmyelination, is a prevalent demyelinating disease of the central nervous system in premature infants, necessitating the development of mitigating strategies. Convincing evidence suggests that peroxisome proliferator-activated receptor γ (PPARγ) activation is a stimulative factor against the hindered process of oligodendrocyte (OL) differentiation. However, much remains unknown about its promotive mechanism. Our previous study indicated that alpha-asaronol (α-asaronol) could alleviate myelination disorder in a neonatal PWMI rat model, but the mechanism remained unclear. In this study, we demonstrated that α-asaronol attenuated cognitive deficits, repaired myelin damage, and stimulated OL differentiation in the corpus callosum of PWMI rats. Co-immunoprecipitation analysis confirmed that α-asaronol induced the binding of PPARγ with its coactivator peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α), which in turn activated oligodendroglial PPARγ. This activation subsequently upregulated the expression of phosphatase and tensin homolog (PTEN) and pro-differentiation-associated genes of Cnp1 and Klk6 and downregulated the expression of Clk1. However, the benefits of α-asaronol were blocked by GW9662, an antagonist of PPARγ. Moreover, α-asaronol also promoted OPC differentiation under oxygen-glucose deprivation conditions. In conclusion, α-asaronol can promote OL differentiation and myelination and alleviate cognitive deficits in neonatal PWMI rats by activating PPARγ and modulating OL differentiation-associated gene expression. This study suggests that α-asaronol may be a potential therapeutic drug for myelination failure in PWMI.


Asunto(s)
Células Precursoras de Oligodendrocitos , PPAR gamma , Ratas , Animales , PPAR gamma/metabolismo , Diferenciación Celular/fisiología , Oligodendroglía/metabolismo
15.
Chemosphere ; 335: 139062, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37253402

RESUMEN

Degradation of Chlorine-containing disinfection by-products(Cl-DBPs) on surface by electrocatalytic hydrodechlorination (EHDC) is considered a promising advanced water treatment method. Cl-DBPs have ecological toxicity and health risks so that it is urgent to degrade DBPs. We designed and verified the degradation performance of the EHDC of 18 kinds of DBPs (TAAs, TANs, TALs, TNMs, TAcAms, THMs) with different substituents led by the Ti3C2X2(X = O/OH) system by the first-principles. On the surface of Ti3C2(OH)2, DBPs react with atomic hydrogen (*H) by a direct-indirect continuous reduction mechanism to eliminate the Cl atom in turn. Dissociative adsorption of DBPs on the surface of Ti3C2(OH)2 simultaneously realizes the first electron transfer step and forms H vacancy, which makes its electrocatalytic activity superior to that of Ti3C2O2. Removing the six types of DBPs only needs to add -0.1 V of applied potential. In addition, we investigated the impact of substituents and chlorination degree on the reactivity of DBPs removal. The strong electron-withdrawing group is more conducive to the dechlorination reaction. Dehalogenation is much favorable in thermodynamics as the increase in chlorination degree. This study provides important insights and efficient catalysts for the degradation of DBPs and shows the potential of MXenes in eliminating chloride in water.


Asunto(s)
Desinfectantes , Contaminantes Químicos del Agua , Purificación del Agua , Cloro/análisis , Cloruros , Contaminantes Químicos del Agua/análisis , Titanio , Halógenos , Desinfección/métodos , Halogenación , Purificación del Agua/métodos
16.
Polymers (Basel) ; 15(8)2023 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-37112013

RESUMEN

To meet the comprehensive demand for flexible microwave absorbing (MA) materials, a novel MA rubber containing homemade Polypyrrole nanotube (PPyNT) is produced based on the natural rubber (NR) and acrylonitrile-butadiene rubber (NBR) blends. To achieve the optimal MA performance in the X band, the PPyNT content and NR/NBR blend ratio are adjusted in detail. The 6 phr PPyNT filled NR/NBR (90/10) composite has the superior MA performance with the minimum reflection loss value of -56.67 dB and the corresponding effective bandwidth of 3.7 GHz at a thickness of 2.9 mm, which has the merits in virtue of achieving strong absorption and wide effective absorption band with low filler content and thickness compared to most reported microwave absorbing rubber materials over the same frequency. This work provides new insight into the development of flexible microwave-absorbing materials.

17.
Front Plant Sci ; 14: 1139526, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36950351

RESUMEN

The HVA22 family of genes, induced by abscisic acid and stress, encodes a class of stress response proteins with a conserved TB2/DP1/HVA22 domain that are unique among eukaryotes. Previous studies have shown that HVA22s play an important role in plant responses to abiotic stresses. In the present study, 34, 32, 16, and 17 HVA22s were identified in G. barbadense, G. hirsutum, G. arboreum, and G. raimondii, respectively. These HVA22 genes were classified into nine subgroups, randomly distributed on the chromosomes. Synteny analysis showed that the amplification of the HVA22s were mainly due to segmental duplication or whole genome replication (WGD). Most HVA22s promoter sequences contain a large number of drought response elements (MYB), defense and stress response elements (TC-rich repeats), and hormone response elements (ABRE, ERE, SARE, etc.), suggesting that HVA22s may respond to adversity stresses. Expression profiling demonstrated that most GhHVA22s showed a constitutive expression pattern in G. hirsutum and could respond to abiotic stresses such as salt, drought, and low temperature. Overexpression of GhHVA22E1D (GH_D07G0564) in Arabidopsis thaliana enhances salt and drought tolerance in Arabidopsis. Virus-induced gene silencing of GhHVA22E1D reduced salt and drought tolerance in cotton. This indicates that GhHVA22E1D plays an active role in the plant response to salt stress and drought stress. GhHVA22E1D may act in plant response to adversity by altering the antioxidant capacity of plants. This study provides valuable information for the functional genomic study of the HVA22 gene family in cotton. It also provides a reference for further elucidation of the functional studies of HVA22 in plant resistance to abiotic stress response.

18.
Water Res ; 235: 119867, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36934539

RESUMEN

Understanding the sources of antibiotics is important for managing antibiotic contamination and preventing environmental risks in the aquatic environment. In this study, the distribution of dissolved organic matter (DOM) and 24 antibiotics from four typical classes (quinolones, macrolides, sulfonamides and tetracyclines) in the Yellow River basin containing distinct sources of pollution was investigated. In particular, relationships between the antibiotic concentrations and fluorescent properties of DOM were to be established to identify antibiotic sources. A total of 22 antibiotics were detected, with maximum concentrations ranging from 0.27 to 30.14 ng/L in the mainstream of the Yellow River. Of these antibiotics, only erythromycin (ERY) and sulfamethoxazole (SMX) posed potential risks to aquatic organisms. Spatially, tetracyclines were mainly distributed in the upstream reaches of the river, and quinolones were largely distributed in the midstream. High levels of sulfonamides were present downstream of the investigated river. Only EYR belonging to the macrolide group was detected and had a high downstream concentration. EEM-PARAFAC analysis showed that DOM was composed of visible fulvic acid-like fluorescence fraction (C1), ultraviolet fulvic acid-like fluorescence fraction (C2) and protein-like fraction (C3). Using Pearson correlation analysis, this study demonstrated a close relationship between DOM spectral parameters and antibiotic concentrations in the Yellow River basin. Specifically, r (C3, C2) was significantly and positively correlated with the concentrations of SMX, sulfadoxine (SDX), and ERY, while humification index (HIX) had an opposite relationship with these antibiotics. These results suggested that SMX, SDX and ERY were mainly discharged from wastewater treatment plants into the mainstream of the Yellow River. This work provides a powerful demonstration that DOM plays an important role in indicating the occurrence and sources of antibiotics in the aquatic environment.


Asunto(s)
Antibacterianos , Materia Orgánica Disuelta , Antibacterianos/análisis , Sulfanilamida , Eritromicina , China , Sulfametoxazol , Sulfadoxina , Sulfonamidas , Espectrometría de Fluorescencia
19.
Molecules ; 28(5)2023 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-36903659

RESUMEN

Furosemide is a widely used loop diuretic in the treatment of congestive heart failure and edema. During the preparation of furosemide, a new process-related impurity G in the levels ranging from 0.08% to 0.13% was detected in pilot batches by a new high performance liquid chromatography (HPLC) method. The new impurity was isolated and characterized by comprehensive analysis of FT-IR, Q-TOF/LC-MS, 1D-NMR (1H, 13C, and DEPT), and 2D-NMR (1H-1H-COSY, HSQC, and HMBC) spectroscopy data. The possible formation pathway of impurity G was also discussed in detail. Moreover, a novel HPLC method was developed and validated for the determination of impurity G and the other six known impurities registered in the European Pharmacopoeia as per ICH guidelines. The HPLC method was validated with respect to system suitability, linearity, the limit of quantitation, the limit of detection, precision, accuracy, and robustness. The characterization of impurity G and the validation of its quantitative HPLC method were reported for the first time in this paper. Finally, the toxicological properties of impurity G were predicted by the in silico webserver ProTox-II.


Asunto(s)
Contaminación de Medicamentos , Furosemida , Cromatografía Líquida de Alta Presión/métodos , Espectroscopía Infrarroja por Transformada de Fourier , Cromatografía Liquida , Espectrometría de Masas
20.
Psychopharmacology (Berl) ; 240(4): 881-897, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36752814

RESUMEN

RATIONALE: Drug combinations are commonly used in pain management, which can produce potent analgesic effects with reduced dosage and adverse effects. OBJECTIVE: This study was designed to evaluate the anti-nociceptive effects and adverse effects of new combinations of flupirtine (a Kv7 potassium channel opener) and antihistamines (promethazine, fexofenadine) on acute and chronic pain in mice, and the possible mechanisms behind the synergistic analgesic effects were preliminarily investigated. METHODS: In acetic acid writhing test, carrageenan-induced inflammatory pain model, and paclitaxel-induced neuropathic pain model, the interaction indexes (γ) between flupirtine and antihistamines were determined by isobolographic analysis. Furthermore, the Kv7 channel blocker XE991 was used to determine whether the effects of single agents and drug combinations on paclitaxel- and carrageenan-induced mechanical allodynia were mediated by Kv7 channels. Finally, hepatotoxicity markers, liver histopathology, and the rotarod test were used to investigate the adverse effects of drugs in combination doses. RESULTS: The interaction indexes of flupirtine-promethazine and flupirtine-fexofenadine in all the above three pain models were lower than 1. The analgesic effects of flupirtine (13 mg/kg), promethazine (5 mg/kg), fexofenadine (20 mg/kg), and their combinations were antagonized significantly by XE991 (3 mg/kg). And the adverse effects of flupirtine and antihistamines in combination doses were not significantly different from the vehicle group. CONCLUSIONS: Flupirtine and antihistamines produced synergistic analgesic effects in all the above pain models. The analgesic effects of antihistamines were partially mediated by Kv7/M channels, and the activation of Kv7/M channels may be partly responsible for the synergistic analgesic effects between flupirtine and antihistamines.


Asunto(s)
Analgésicos , Neuralgia , Ratones , Animales , Analgésicos/farmacología , Prometazina , Carragenina , Aminopiridinas/farmacología , Antagonistas de los Receptores Histamínicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...